ISOMETRIC EMBEDDING OF l1 INTO LIPSCHITZ-FREE SPACES AND l(infinity) INTO THEIR DUALS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366815" target="_blank" >RIV/00216208:11320/17:10366815 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1090/proc/13590" target="_blank" >http://dx.doi.org/10.1090/proc/13590</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/13590" target="_blank" >10.1090/proc/13590</a>
Alternative languages
Result language
angličtina
Original language name
ISOMETRIC EMBEDDING OF l1 INTO LIPSCHITZ-FREE SPACES AND l(infinity) INTO THEIR DUALS
Original language description
We show that the dual of every infinite-dimensional Lipschitzfree Banach space contains an isometric copy of l(infinity) and that it is often the case that a Lipschitz-free Banach space contains a 1-complemented subspace isometric to l(1). Even though we do not know whether the latter is true for every infinite-dimensional Lipschitz-free Banach space, we show that the space is never rotund. In the last section we survey the relations between isometric embeddability of l(infinity) into X* and containment of a good copy of l(1) in X for a general Banach space X.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
—
Volume of the periodical
145
Issue of the periodical within the volume
8
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
3409-3421
UT code for WoS article
000404112000020
EID of the result in the Scopus database
2-s2.0-85019593169