All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ISOMETRIC EMBEDDING OF l1 INTO LIPSCHITZ-FREE SPACES AND l(infinity) INTO THEIR DUALS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366815" target="_blank" >RIV/00216208:11320/17:10366815 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1090/proc/13590" target="_blank" >http://dx.doi.org/10.1090/proc/13590</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/proc/13590" target="_blank" >10.1090/proc/13590</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ISOMETRIC EMBEDDING OF l1 INTO LIPSCHITZ-FREE SPACES AND l(infinity) INTO THEIR DUALS

  • Original language description

    We show that the dual of every infinite-dimensional Lipschitzfree Banach space contains an isometric copy of l(infinity) and that it is often the case that a Lipschitz-free Banach space contains a 1-complemented subspace isometric to l(1). Even though we do not know whether the latter is true for every infinite-dimensional Lipschitz-free Banach space, we show that the space is never rotund. In the last section we survey the relations between isometric embeddability of l(infinity) into X* and containment of a good copy of l(1) in X for a general Banach space X.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the American Mathematical Society

  • ISSN

    0002-9939

  • e-ISSN

  • Volume of the periodical

    145

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    3409-3421

  • UT code for WoS article

    000404112000020

  • EID of the result in the Scopus database

    2-s2.0-85019593169