Splittability and 1-amalgamability of permutation classes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10366863" target="_blank" >RIV/00216208:11320/17:10366863 - isvavai.cz</a>
Result on the web
<a href="https://dmtcs.episciences.org/4125" target="_blank" >https://dmtcs.episciences.org/4125</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Splittability and 1-amalgamability of permutation classes
Original language description
A permutation class CC is splittable if it is contained in a merge of two of its proper subclasses, and it is 1-amalgamable if given two permutations σ and τ in C, each with a marked element, we can find a permutation π in C containing both σ and τ such that the two marked elements coincide. It was previously shown that unsplittability implies 1-amalgamability. We prove that unsplittability and 1-amalgamability are not equivalent properties of permutation classes by showing that the class Av(1423,1342) . Av(1423,1342) is both splittable and 1-amalgamable. Our construction is based on the concept of LR-inflations, which we introduce here and which may be of independent interest.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ16-01602Y" target="_blank" >GJ16-01602Y: Topological and geometric approaches to classes of permutations and graph properties</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics and Theoretical Computer Science [online]
ISSN
1365-8050
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
2
Country of publishing house
FR - FRANCE
Number of pages
14
Pages from-to
—
UT code for WoS article
000423285900003
EID of the result in the Scopus database
2-s2.0-85040456225