All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Escape of asteroids from the main belt

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10367580" target="_blank" >RIV/00216208:11320/17:10367580 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1051/0004-6361/201629252" target="_blank" >http://dx.doi.org/10.1051/0004-6361/201629252</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/201629252" target="_blank" >10.1051/0004-6361/201629252</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Escape of asteroids from the main belt

  • Original language description

    Aims. We locate escape routes from the main asteroid belt, particularly into the near-Earth-object (NEO) region, and estimate the relative fluxes for different escape routes as a function of object size under the influence of the Yarkovsky semimajor-axis drift. Methods. We integrated the orbits of 78 355 known and 14 094 cloned main-belt objects and Cybele and Hilda asteroids (hereafter collectively called MBOs) for 100 Myr and recorded the characteristics of the escaping objects. The selected sample of MBOs with perihelion distance q &gt; 1.3 au and semimajor axis a &lt; 4.1 au is essentially complete, with an absolute magnitude limit ranging from H-V &lt; 15. 9 in the inner belt (a &lt; 2.5 au) to HV &lt; 14.4 in the outer belt (2.5 au &lt; a &lt; 4.1 au). We modeled the semimajor- axis drift caused by the Yarkovsky force and assigned four different sizes ( diameters of 0.1, 0.3, 1.0, and 3.0 km) and random spin obliquities (either 0 deg or 180 deg) for each test asteroid. Results. We find more than ten obvious escape routes from the asteroid belt to the NEO region, and they typically coincide with low-order mean-motion resonances with Jupiter and secular resonances. The locations of the escape routes are independent of the semimajor-axis drift rate and thus are also independent of the asteroid diameter. The locations of the escape routes are likewise unaffected when we added a model for Yarkovsky-O&apos;Keefe-Radzievskii-Paddack (YORP) cycles coupled with secular evolution of the rotation pole as a result of the solar gravitational torque. A Yarkovsky- only model predicts a flux of asteroids entering the NEO region that is too high compared to the observationally constrained flux, and the discrepancy grows larger for smaller asteroids. A combined Yarkovsky and YORP model predicts a flux of small NEOs that is approximately a factor of 5 too low compared to an observationally constrained estimate. This suggests that the characteristic timescale of the YORP cycle is longer than our canonical YORP model predicts.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/GA13-01308S" target="_blank" >GA13-01308S: Dynamics of small bodies in the solar system</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics [online]

  • ISSN

    1432-0746

  • e-ISSN

  • Volume of the periodical

    598

  • Issue of the periodical within the volume

    únor

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000394465000052

  • EID of the result in the Scopus database