Expander Construction in VNC1
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10368745" target="_blank" >RIV/00216208:11320/17:10368745 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.31" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ITCS.2017.31" target="_blank" >10.4230/LIPIcs.ITCS.2017.31</a>
Alternative languages
Result language
angličtina
Original language name
Expander Construction in VNC1
Original language description
We give a combinatorial analysis (using edge expansion) of a variant of the iterative expander construction due to Reingold, Vadhan, and Wigderson (2002), and show that this analysis can be formalized in the bounded arithmetic system VNC^1 (corresponding to the "NC^1 reasoning"). As a corollary, we prove the assumption made by Jerabek (2011) that a construction of certain bipartite expander graphs can be formalized in VNC^1. This in turn implies that every proof in Gentzen's sequent calculus LK of a monotone sequent can be simulated in the monotone version of LK (MLK) with only polynomial blowup in proof size, strengthening the quasipolynomial simulation result of Atserias, Galesi, and Pudlak (2002).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
8th Innovations in Theoretical Computer Science Conference (ITCS 2017)
ISBN
978-3-95977-029-3
ISSN
1868-8969
e-ISSN
neuvedeno
Number of pages
26
Pages from-to
1-26
Publisher name
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik
Place of publication
Dagstuhl, Germany
Event location
Berkeley, CA, USA
Event date
Jan 9, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—