All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the structure of sets with positive reach

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369103" target="_blank" >RIV/00216208:11320/17:10369103 - isvavai.cz</a>

  • Result on the web

    <a href="http://onlinelibrary.wiley.com/doi/10.1002/mana.201600237/abstract" target="_blank" >http://onlinelibrary.wiley.com/doi/10.1002/mana.201600237/abstract</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.201600237" target="_blank" >10.1002/mana.201600237</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the structure of sets with positive reach

  • Original language description

    We give a complete characterization of compact sets with positive reach in the plane and of one-dimensional sets with positive reach in a space of dimension d. Further, we examine lower dimensional sets of positive reach and we show that the boundary of a set with positive reach can be locally covered by finitely many semiconcave hypersurfaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA15-08218S" target="_blank" >GA15-08218S: Theory of real functions and its applications in geometry</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

  • Volume of the periodical

    290

  • Issue of the periodical within the volume

    11-12

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    24

  • Pages from-to

    1806-1829

  • UT code for WoS article

    000407032600012

  • EID of the result in the Scopus database

    2-s2.0-85008481901