The graphs of join-semilattices and the shape of congruence lattices of particle lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369292" target="_blank" >RIV/00216208:11320/17:10369292 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.14712/1213-7243.2015.214" target="_blank" >http://dx.doi.org/10.14712/1213-7243.2015.214</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/1213-7243.2015.214" target="_blank" >10.14712/1213-7243.2015.214</a>
Alternative languages
Result language
angličtina
Original language name
The graphs of join-semilattices and the shape of congruence lattices of particle lattices
Original language description
We attach to each < 0, V >-semilattice S a graph G(S) whose vertices are join-irreducible elements of S and whose edges correspond to the reflexive dependency relation. We study properties of the graph G(S) both when S is a join-semilattice and when it is a lattice. We call a < 0, V >-semilattice S particle provided that the set of its join-irreducible elements satisfies DCC and join-generates S. We prove that the congruence lattice of a particle lattice is anti-isomorphic to the lattice of all hereditary subsets of the corresponding graph that are closed in a certain zero-dimensional topology. Thus we extend the result known for principally chain finite lattices.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Commentationes Mathematicae Universitatis Carolinae
ISSN
0010-2628
e-ISSN
—
Volume of the periodical
58
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
17
Pages from-to
275-291
UT code for WoS article
000417997500002
EID of the result in the Scopus database
2-s2.0-85030539138