All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The graphs of join-semilattices and the shape of congruence lattices of particle lattices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369292" target="_blank" >RIV/00216208:11320/17:10369292 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.14712/1213-7243.2015.214" target="_blank" >http://dx.doi.org/10.14712/1213-7243.2015.214</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14712/1213-7243.2015.214" target="_blank" >10.14712/1213-7243.2015.214</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The graphs of join-semilattices and the shape of congruence lattices of particle lattices

  • Original language description

    We attach to each &lt; 0, V &gt;-semilattice S a graph G(S) whose vertices are join-irreducible elements of S and whose edges correspond to the reflexive dependency relation. We study properties of the graph G(S) both when S is a join-semilattice and when it is a lattice. We call a &lt; 0, V &gt;-semilattice S particle provided that the set of its join-irreducible elements satisfies DCC and join-generates S. We prove that the congruence lattice of a particle lattice is anti-isomorphic to the lattice of all hereditary subsets of the corresponding graph that are closed in a certain zero-dimensional topology. Thus we extend the result known for principally chain finite lattices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Commentationes Mathematicae Universitatis Carolinae

  • ISSN

    0010-2628

  • e-ISSN

  • Volume of the periodical

    58

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    17

  • Pages from-to

    275-291

  • UT code for WoS article

    000417997500002

  • EID of the result in the Scopus database

    2-s2.0-85030539138