All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the Evolution of Planner-Specific Macro Sets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10369850" target="_blank" >RIV/00216208:11320/17:10369850 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-70169-1_33" target="_blank" >http://dx.doi.org/10.1007/978-3-319-70169-1_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-70169-1_33" target="_blank" >10.1007/978-3-319-70169-1_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the Evolution of Planner-Specific Macro Sets

  • Original language description

    In Automated Planning, generating macro-operators (macros) is a well-known reformulation approach that is used to speed-up the planning process. Most of the macro generation techniques aim for using the same set of generated macros on every problem instance of a given domain. This limits the usefulness of macros in scenarios where the environment and thus the structure of instances is dynamic, such as in real-world applications. Moreover, despite the wide availability of parallel processing units, there is a lack of approaches that can take advantage of multiple parallel cores, while exploiting macros. In this paper we propose the Macro sets Evolution (MEvo) approach. MEvo has been designed for overcoming the aforementioned issues by exploiting multiple cores for combining promising macros --taken from a given pool-- in different sets, while solving continuous streams of problem instances. Our empirical study, involving 5 state-of-the-art planning engines and a large number of planning instances, demonstrates the effectiveness of the proposed MEvo approach.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50803 - Information science (social aspects)

Result continuities

  • Project

    <a href="/en/project/GJ17-17125Y" target="_blank" >GJ17-17125Y: Balancing Deliberative and Reactive Behaviour of Intelligent Agents</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AI*IA 2017 Advances in Artificial Intelligence

  • ISBN

    978-3-319-70169-1

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    12

  • Pages from-to

    443-454

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham, Švýcarsko

  • Event location

    Bari, Italie

  • Event date

    Nov 14, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article