EXISTENCE OF LARGE-DATA FINITE-ENERGY GLOBAL WEAK SOLUTIONS TO A COMPRESSIBLE OLDROYD-B MODEL
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371167" target="_blank" >RIV/00216208:11320/17:10371167 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4310/CMS.2017.v15.n5.a5" target="_blank" >http://dx.doi.org/10.4310/CMS.2017.v15.n5.a5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/CMS.2017.v15.n5.a5" target="_blank" >10.4310/CMS.2017.v15.n5.a5</a>
Alternative languages
Result language
angličtina
Original language name
EXISTENCE OF LARGE-DATA FINITE-ENERGY GLOBAL WEAK SOLUTIONS TO A COMPRESSIBLE OLDROYD-B MODEL
Original language description
A compressible Oldroyd-B type model with stress diffusion is derived from a compressible Navier-Stokes-Fokker-Planck system arising in the kinetic theory of dilute polymeric fluids, where polymer chains immersed in a barotropic, compressible, isothermal, viscous Newtonian solvent, are idealized as pairs of massless beads connected with Hookean springs. We develop a priori bounds for the model, including a logarithmic bound, which guarantee the nonnegativity of the elastic extra stress tensor, and we prove the existence of large data global-in-time finite-energy weak solutions in two space dimensions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Communications in Mathematical Sciences
ISSN
1539-6746
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
59
Pages from-to
1265-1323
UT code for WoS article
000404018900005
EID of the result in the Scopus database
—