All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

New outburst of the symbiotic nova AG Pegasi after 165 yr

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371670" target="_blank" >RIV/00216208:11320/17:10371670 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1051/0004-6361/201629593" target="_blank" >http://dx.doi.org/10.1051/0004-6361/201629593</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/201629593" target="_blank" >10.1051/0004-6361/201629593</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    New outburst of the symbiotic nova AG Pegasi after 165 yr

  • Original language description

    Context. AG Peg is known as the slowest symbiotic nova, which experienced its nova-like outburst around 1850. After 165 yr, during June of 2015, it erupted again showing characteristics of the Z And-type outburst. Aims. The primary objective is to determine basic characteristics, the nature and type of the 2015 outburst of AG Peg. Methods. We achieved this aim by modelling the spectral energy distribution using low-resolution spectroscopy (330-750 nm; R = 500-1000), medium-resolution spectroscopy (420-720 nm; R similar to 11 000), and UBVRCIC photometry covering the 2015 outburst with a high cadence. Optical observations were complemented with the archival HST and FUSE spectra from the preceding quiescence. Results. During the outburst, the luminosity of the hot component was in the range of 2-11 x 10(37) (d/0.8 kpc)(2) erg s(-1), being in correlation with the light curve (LC) profile. To generate the maximum luminosity by the hydrogen burning, the white dwarf (WD) had to accrete at similar to 3 x 10(-7) M-circle dot yr(-1), which exceeds the stable-burning limit and thus led to blowing optically thick wind from the WD. We determined its mass-loss rate to a few x10(-6) M-circle dot yr(-1). At the high temperature of the ionising source, 1.5-2.3 x 10(5) K, the wind converted a fraction of the WD&apos;s photospheric radiation into the nebular emission that dominated the optical. A one order of magnitude increase of the emission measure, from a few x10(59) (d/0.8 kpc)(2) cm(-3) during quiescence, to a few x10(60) (d/0.8 kpc)(2) cm(-3) during the outburst, caused a 2 mag brightening in the LC, which is classified as the Z And-type of the outburst. Conclusions. The very high nebular emission and the presence of a disk-like H i region encompassing the WD, as indicated by a significant broadening and high flux of the Raman-scattered O VI 6825 angstrom line during the outburst, is consistent with the ionisation structure of hot components in symbiotic stars during active phases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics [online]

  • ISSN

    1432-0746

  • e-ISSN

  • Volume of the periodical

    604

  • Issue of the periodical within the volume

    srpen

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    19

  • Pages from-to

  • UT code for WoS article

    000408480100014

  • EID of the result in the Scopus database