Multipartite analysis of average-subsystem entropies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10371726" target="_blank" >RIV/00216208:11320/17:10371726 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1103/PhysRevA.96.052302" target="_blank" >http://dx.doi.org/10.1103/PhysRevA.96.052302</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.96.052302" target="_blank" >10.1103/PhysRevA.96.052302</a>
Alternative languages
Result language
angličtina
Original language name
Multipartite analysis of average-subsystem entropies
Original language description
So-called average subsystem entropies are defined by first taking partial traces over some pure state to define density matrices, then calculating the subsystem entropies, and finally averaging over the pure states to define the average subsystem entropies. These quantities are standard tools in quantum information theory, most typically applied in bipartite systems. We shall first present some extensions to the usual bipartite analysis (including a calculation of the average tangle and a bound on the average concurrence), follow this with some useful results for tripartite systems, and finally extend the discussion to arbitrary multipartite systems. A particularly nice feature of tripartite and multipartite analyses is that this framework allows one to introduce an "environment" to which small subsystems can couple.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GB14-37086G" target="_blank" >GB14-37086G: Albert Einstein Center for Gravitation and Astrophysics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review A
ISSN
2469-9926
e-ISSN
—
Volume of the periodical
96
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
—
UT code for WoS article
000414132300003
EID of the result in the Scopus database
2-s2.0-85033673003