All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F17%3A10425338" target="_blank" >RIV/00216208:11320/17:10425338 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sqeM8LVFjb" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sqeM8LVFjb</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.analchem.6b04625" target="_blank" >10.1021/acs.analchem.6b04625</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    PEDOT(PSS) as Solid Contact for Ion-Selective Electrodes: The Influence of the PEDOT(PSS) Film Thickness on the Equilibration Times

  • Original language description

    To understand the rate determining processes during the equilibration of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate-based (PEDOT(PSS)-based) solid contact (SC) ion-selective electrodes (ISEs), the surfaces of Pt, Au, and GC electrodes were coated with 0.1, 1.0, 2.0, and 4.0 km thick galvanostatically deposited PEDOT(PSS) films. Next, potential vs time transients were recorded with these electrodes, with and without an additional potassium ion-selective membrane (ISM) coating, following their first contact with 0.1 M KCl solutions. The transients were significantly different when the multilayered sensor structures were assembled on Au or GC compared to Pt. The differences in the rate of equilibration were interpreted as a consequence of differences in the hydrophilicity of PEDOT(PSS) in contact with the substrate electrode surfaces based on X-ray photoelectron spectroscopy (XPS) and synchrotron radiation-XPS (SR-XPS) analysis of 10-100 nm thick PEDOT(PSS) films. The influence of the layer thickness of the electrochemically deposited PEDOT(PSS)-films on the hydrophilicity of these films has been documented by contact angle measurements over PEDOT(PSS)-coated Au, GC, and Pt electrode surfaces. This study demonstrates that it is possible to minimize the equilibration (conditioning) time of SC ISEs with aqueous solutions before usage by optimizing the thickness of the SC layer with a controlled ISM thickness. PEDOT(PSS)-coated Au and GC electrodes exhibit a significant negative potential drift during their equilibration in an aqueous solution. By coating the PEDOT(PSS) surface with an ISM, the negative potential drift is compensated by a positive potential drift related to the hydration of the ISM and activity changes at the PEDOT(PSS)vertical bar ISM interface. The potential drifts related to activity changes in the ISM have been determined by a novel adaptation of the &apos;&apos; sandwich membrane &apos;&apos; method.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Analytical Chemistry

  • ISSN

    0003-2700

  • e-ISSN

  • Volume of the periodical

    89

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    9

  • Pages from-to

    3508-3516

  • UT code for WoS article

    000397478300037

  • EID of the result in the Scopus database

    2-s2.0-85018773377