All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Drawing Graphs Using a Small Number of Obstacles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10366667" target="_blank" >RIV/00216208:11320/18:10366667 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007%2Fs00454-017-9919-2" target="_blank" >https://link.springer.com/article/10.1007%2Fs00454-017-9919-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-017-9919-2" target="_blank" >10.1007/s00454-017-9919-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Drawing Graphs Using a Small Number of Obstacles

  • Original language description

    An obstacle representation of a graph G is a set of points in the plane representing the vertices of G, together with a set of polygonal obstacles such that two vertices of G are connected by an edge in G if and only if the line segment between the corresponding points avoids all the obstacles. The obstacle number obs(G) of G is the minimum number of obstacles in an obstacle representation of G. We provide the first non-trivial general upper bound on the obstacle number of graphs by showing that every n-vertex graph G satisfies obs(G)LESS-THAN OR EQUAL TOnLEFT CEILINGlognRIGHT CEILINGMINUS SIGN n+1. This refutes a conjecture of Mukkamala, Pach, and Pálvölgyi. For n-vertex graphs with bounded chromatic number, we improve this bound to O(n). Both bounds apply even when the obstacles are required to be convex. We also prove a lower bound 2Ω(hn) on the number of n-vertex graphs with obstacle number at most h for h&lt;n and a lower bound Ω(n^(4/3)M^(2/3)) for the complexity of a collection of MGREATER-THAN OR EQUAL TOΩ(nlog^(3/2)(n)) faces in an arrangement of line segments with n endpoints. The latter bound is tight up to a multiplicative constant.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    59

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    22

  • Pages from-to

    143-164

  • UT code for WoS article

    000418291200006

  • EID of the result in the Scopus database

    2-s2.0-85027833996