Learning communication patterns for malware discovery in HTTPs data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10374342" target="_blank" >RIV/00216208:11320/18:10374342 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00321114
Result on the web
<a href="https://doi.org/10.1016/j.eswa.2018.02.010" target="_blank" >https://doi.org/10.1016/j.eswa.2018.02.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2018.02.010" target="_blank" >10.1016/j.eswa.2018.02.010</a>
Alternative languages
Result language
angličtina
Original language name
Learning communication patterns for malware discovery in HTTPs data
Original language description
Encrypted communication on the Internet using the HTTPs protocol represents a challenging task for network intrusion detection systems. While it significantly helps to preserve users' privacy, it also limits a detection system's ability to understand the traffic and effectively identify malicious activities. In this work, we propose a method for modeling and representation of encrypted communication from logs of web communication. The idea is based on introducing communication snapshots of individual users' activity that model contextual information of the encrypted requests. This helps to compensate the information hidden by the encryption. We then propose statistical descriptors of the communication snapshots that can be consumed by various machine learning algorithms for either supervised or unsupervised analysis of the data. In the experimental evaluation, we show that the presented approach can be used even on a large corpus of network traffic logs as the process of creation of the descriptors can be effectively implemented on a Hadoop cluster.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-08916S" target="_blank" >GA15-08916S: Efficient subgraph discovery for petabyte-scale web analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
101
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
129-142
UT code for WoS article
000428498300009
EID of the result in the Scopus database
2-s2.0-85042216186