Arithmetics in number systems with cubic base
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10377934" target="_blank" >RIV/00216208:11320/18:10377934 - isvavai.cz</a>
Result on the web
<a href="http://alant.math.us.edu.pl/" target="_blank" >http://alant.math.us.edu.pl/</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Arithmetics in number systems with cubic base
Original language description
Using a base and a finite set of digits, we can express real or complex numbers in many different ways. One possibility, the so-called greedy expansions, was introduced by A. R'enyi in 1957. The main advantage of this approach is the fact that they conserve the order of real numbers. However, if we add or multiply the numbers with a finite greedy expansion, i.e., ended with infinetely many zeros, there can appear some additional digits at the end of our expansions. In this talk, we will focus on the length of this extension, especially for the case of cubic bases.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů