An experimental and theoretical study of adenine adsorption on Au(111)
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10379280" target="_blank" >RIV/00216208:11320/18:10379280 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1039/c7cp08102b" target="_blank" >https://doi.org/10.1039/c7cp08102b</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c7cp08102b" target="_blank" >10.1039/c7cp08102b</a>
Alternative languages
Result language
angličtina
Original language name
An experimental and theoretical study of adenine adsorption on Au(111)
Original language description
A model study of adenine adsorption on the Au(111) surface is reported for molecular adlayers prepared by evaporation in vacuum and deposition from saturated aqueous solution. The electronic structure and adsorption geometry of the molecular films were studied experimentally by X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy. Adsorption models are proposed for the adlayers arising from the different preparation methods. Density functional theory calculations were used to examine both parallel and upright adenine adsorption geometries, supply additional information on the bond strength, and identify which atom is involved in bonding to Au(111). In the case of deposition in vacuum, the adenine molecule is bound via van der Waals forces to Au(111) with the molecular plane parallel to the surface, consistent with the published scanning tunneling microscopy data on this system. The most stable parallel adenine configuration was found to have an adsorption energy of ca. -1.1 eV using the optB86b-vdW functional. For adenine deposition from aqueous solution, the adlayer is disordered, with molecules in an upright geometry, and with an adsorption energy of ca. -1.0 eV, coordinated via the imino N3 nitrogen atom. The present study contributes to the substantial literature of model studies of adenine on Au(111), complementing the existing knowledge with information on electronic structure, bonding geometry and adsorption energy of this system.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10305 - Fluids and plasma physics (including surface physics)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
7
Country of publishing house
GB - UNITED KINGDOM
Number of pages
11
Pages from-to
4688-4698
UT code for WoS article
000425107800008
EID of the result in the Scopus database
2-s2.0-85042152644