Discontinuous Galerkin method for a nonlocal hydrodynamic model of flocking dynamics
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10382255" target="_blank" >RIV/00216208:11320/18:10382255 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jcp.2018.06.055" target="_blank" >https://doi.org/10.1016/j.jcp.2018.06.055</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2018.06.055" target="_blank" >10.1016/j.jcp.2018.06.055</a>
Alternative languages
Result language
angličtina
Original language name
Discontinuous Galerkin method for a nonlocal hydrodynamic model of flocking dynamics
Original language description
In this paper we devise an efficient and robust numerical method for a nonlocal nonlinear model of flocking dynamics. The governing equations are a hydrodynamic limit of the model of Cucker and Smale which consists of the compressible Euler equations with added nonlinear nonlocal interaction terms. The numerical scheme is based on the discontinuous Galerkin method. A semi-implicit scheme is used in the time discretization which requires only the solution of one linear system per time level while retaining the stability of an implicit scheme. A crucial point is the construction of a suitable linearization of the nonlocal terms which does not result in fill-in of the system matrices. Element-wise and inter-element artificial diffusion is added to the scheme along with a postprocessing procedure to deal with near-vacuum states that typically arise in the solution. We demonstrate the efficiency and robustness of the scheme on numerical experiments in 1D and 2D. (C) 2018 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
—
Volume of the periodical
372
Issue of the periodical within the volume
11
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
500-523
UT code for WoS article
000443284400024
EID of the result in the Scopus database
2-s2.0-85049088335