Taylor's Modularity Conjecture and Related Problems for Idempotent Varieties
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383440" target="_blank" >RIV/00216208:11320/18:10383440 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s11083-017-9441-4" target="_blank" >https://doi.org/10.1007/s11083-017-9441-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11083-017-9441-4" target="_blank" >10.1007/s11083-017-9441-4</a>
Alternative languages
Result language
angličtina
Original language name
Taylor's Modularity Conjecture and Related Problems for Idempotent Varieties
Original language description
We provide a partial result on Taylor's modularity conjecture, and several related problems. Namely, we show that the interpretability join of two idempotent varieties that are not congruence modular is not congruence modular either, and we prove an analog for idempotent varieties with a cube term. Also, similar results are proved for linear varieties and the properties of congruence modularity, having a cube term, congruence n-permutability for a fixed n, and satisfying a non-trivial congruence identity.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA13-01832S" target="_blank" >GA13-01832S: General algebra and its connections to computer science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Order
ISSN
0167-8094
e-ISSN
—
Volume of the periodical
35
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
28
Pages from-to
433-460
UT code for WoS article
000446503600003
EID of the result in the Scopus database
2-s2.0-85034243793