Chains, antichains, and complements in infinite partition lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383772" target="_blank" >RIV/00216208:11320/18:10383772 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00012-018-0514-z" target="_blank" >https://doi.org/10.1007/s00012-018-0514-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-018-0514-z" target="_blank" >10.1007/s00012-018-0514-z</a>
Alternative languages
Result language
angličtina
Original language name
Chains, antichains, and complements in infinite partition lattices
Original language description
We consider the partition lattice Pi(lambda) on any set of transfinite cardinality lambda and properties of Pi(lambda) whose analogues do not hold for finite cardinalities. Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is always exactly lambda; (II) there are maximal chains in Pi(lambda) of cardinality > lambda; (III) a regular cardinal lambda is strongly inaccessible if and only if every maximal chain in II(lambda) has size at least lambda; if lambda is a singular cardinal and mu(<kappa) < lambda <= mu(kappa) for sonic cardinals kappa and (possibly finite) mu, then there is a maximal chain of size < lambda in Pi(lambda); (IV) every non-trivial maximal antichain in II(A) has cardinality between lambda and 2 lambda, and these bounds are realised. Moreover, there are maximal antichains of cardinality max(lambda, 2(kappa)) for any kappa <= lambda; (V) all cardinals of the form lambda(kappa) with 0 <= kappa <= lambda occur as the cardinalities of sets of complements to some partition P is an element of II(lambda), and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition. Under the GCH, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterisation.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
2
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
—
UT code for WoS article
000431737200020
EID of the result in the Scopus database
2-s2.0-85045969891