All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Chains, antichains, and complements in infinite partition lattices

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383772" target="_blank" >RIV/00216208:11320/18:10383772 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00012-018-0514-z" target="_blank" >https://doi.org/10.1007/s00012-018-0514-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00012-018-0514-z" target="_blank" >10.1007/s00012-018-0514-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Chains, antichains, and complements in infinite partition lattices

  • Original language description

    We consider the partition lattice Pi(lambda) on any set of transfinite cardinality lambda and properties of Pi(lambda) whose analogues do not hold for finite cardinalities. Assuming AC, we prove: (I) the cardinality of any maximal well-ordered chain is always exactly lambda; (II) there are maximal chains in Pi(lambda) of cardinality &gt; lambda; (III) a regular cardinal lambda is strongly inaccessible if and only if every maximal chain in II(lambda) has size at least lambda; if lambda is a singular cardinal and mu(&lt;kappa) &lt; lambda &lt;= mu(kappa) for sonic cardinals kappa and (possibly finite) mu, then there is a maximal chain of size &lt; lambda in Pi(lambda); (IV) every non-trivial maximal antichain in II(A) has cardinality between lambda and 2 lambda, and these bounds are realised. Moreover, there are maximal antichains of cardinality max(lambda, 2(kappa)) for any kappa &lt;= lambda; (V) all cardinals of the form lambda(kappa) with 0 &lt;= kappa &lt;= lambda occur as the cardinalities of sets of complements to some partition P is an element of II(lambda), and only these cardinalities appear. Moreover, we give a direct formula for the number of complements to a given partition. Under the GCH, the cardinalities of maximal chains, maximal antichains, and numbers of complements are fully determined, and we provide a complete characterisation.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA14-15479S" target="_blank" >GA14-15479S: Representation Theory (Structural Decompositions and Their Constraints)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Algebra Universalis

  • ISSN

    0002-5240

  • e-ISSN

  • Volume of the periodical

    79

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

  • UT code for WoS article

    000431737200020

  • EID of the result in the Scopus database

    2-s2.0-85045969891