All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Search for top squarks and dark matter particles in opposite-charge dilepton final states at root s=13 TeV

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10383957" target="_blank" >RIV/00216208:11320/18:10383957 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevD.97.032009" target="_blank" >https://doi.org/10.1103/PhysRevD.97.032009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevD.97.032009" target="_blank" >10.1103/PhysRevD.97.032009</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Search for top squarks and dark matter particles in opposite-charge dilepton final states at root s=13 TeV

  • Original language description

    A search for new physics is presented in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from b quarks, and missing transverse momentum (p(T)(miss)). The search uses proton-proton collision data at root s = 13 TeV amounting to 35.9 fb(-1) of integrated luminosity collected using the CMS detector in 2016. Hypothetical signal events are efficiently separated from the dominant t (t) over bar background with requirements on p(T)(miss) and transverse-mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced top squarks. For top squarks, decaying exclusively to a top quark and a neutralino, exclusion limits are placed at 95% confidence level on the mass of the lightest top squark up to 800 GeVand on the lightest neutralino up to 360 GeV. These results, combined with searches in the single-lepton and all-jet final states, raise the exclusion limits up to 1050 GeV for the lightest top squark and up to 500 GeV for the lightest neutralino. For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1300 GeV for top squarks and up to 800 GeV for the lightest neutralino. The results are also interpreted in a simplified model with a dark matter (DM) particle coupled to the top quark through a scalar or pseudoscalar mediator. For light DM, mediator masses up to 100 (50) GeV are excluded for scalar (pseudoscalar) mediators. The result for the scalar mediator achieves some of the most stringent limits to date in this model.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10304 - Nuclear physics

Result continuities

  • Project

    <a href="/en/project/LG14004" target="_blank" >LG14004: Cooperation of Czech Republic with JINR Dubna in the theoretical and nuclear physics and application of nuclear methods in other fields</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review D

  • ISSN

    2470-0010

  • e-ISSN

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

  • UT code for WoS article

    000425093700001

  • EID of the result in the Scopus database

    2-s2.0-85043365002