Tree modules and limits of the approximation theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384101" target="_blank" >RIV/00216208:11320/18:10384101 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Tree modules and limits of the approximation theory
Original language description
In this expository paper, we present a construction of tree modules and combine it with (infinite dimensional) tilting theory and relative Mittag-Leffler conditions in order to explore limits of the approximation theory of modules. We also present a recent generalization of this construction due to Saroch which applies to factorization properties of maps, and yields a solution of an old problem by Auslander concerning existence of almost split sequences.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-23112S" target="_blank" >GA17-23112S: Structure theory for representations of algebras (localization and tilting theory)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů