Lp-valued stochastic convolution integral driven by Volterra noise
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384138" target="_blank" >RIV/00216208:11320/18:10384138 - isvavai.cz</a>
Alternative codes found
RIV/67985556:_____/18:00485286
Result on the web
<a href="https://doi.org/10.1142/S021949371850048X" target="_blank" >https://doi.org/10.1142/S021949371850048X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S021949371850048X" target="_blank" >10.1142/S021949371850048X</a>
Alternative languages
Result language
angličtina
Original language name
Lp-valued stochastic convolution integral driven by Volterra noise
Original language description
Space-time regularity of linear stochastic partial differential equations is studied. The solution is defined in the mild sense in the state space Lp. The corresponding regularity is obtained by showing that the stochastic convolution integrals are Holder continuous in a suitable function space. In particular cases, this allows us to show space-time Hölder continuity of the solution. The main tool used is a hypercontractivity result on Banach-space valued random variables in a finite Wiener chaos.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/GA15-08819S" target="_blank" >GA15-08819S: Stochastic Processes in Infinite Dimensional Spaces</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Stochastics and Dynamics
ISSN
0219-4937
e-ISSN
—
Volume of the periodical
18
Issue of the periodical within the volume
6
Country of publishing house
SG - SINGAPORE
Number of pages
22
Pages from-to
—
UT code for WoS article
000448600200006
EID of the result in the Scopus database
2-s2.0-85040344897