PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384503" target="_blank" >RIV/00216208:11320/18:10384503 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1090/conm/710/14362" target="_blank" >https://doi.org/10.1090/conm/710/14362</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/conm/710/14362" target="_blank" >10.1090/conm/710/14362</a>
Alternative languages
Result language
angličtina
Original language name
PDE analysis of a class of thermodynamically compatible viscoelastic rate-type fluids with stress-diffusion
Original language description
We establish the long-time existence of large-data weak solutions to a system of nonlinear partial differential equations. The system of interest governs the motion of non-Newtonian fluids described by a simplified viscoelastic rate-type model with a stress-diffusion term. The simplified model shares many qualitative features with more complex viscoelastic rate-type models that are frequently used in the modeling of fluids with complicated microstructure. As such, the simplified model provides important preliminary insight into the mathematical properties of these more complex and practically relevant models of non-Newtonian fluids. The simplified model that is analyzed from the mathematical perspective is shown to be thermodynamically consistent, and we extensively comment on the interplay between the thermodynamical background of the model and the mathematical analysis of the corresponding initial-boundary-value problem.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/LL1202" target="_blank" >LL1202: Implicitly constituted material models: from theory through model reduction to efficient numerical methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Mathematical Analysis in Fluid Mechanics: Selected Recent Results
ISBN
978-1-4704-3646-9
Number of pages of the result
29
Pages from-to
25-53
Number of pages of the book
242
Publisher name
American Mathematical Society
Place of publication
Neuveden
UT code for WoS chapter
—