All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mapping n Grid Points Onto a Square Forces an Arbitrarily Large Lipschitz Constant

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10384835" target="_blank" >RIV/00216208:11320/18:10384835 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00039-018-0445-z" target="_blank" >https://doi.org/10.1007/s00039-018-0445-z</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00039-018-0445-z" target="_blank" >10.1007/s00039-018-0445-z</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mapping n Grid Points Onto a Square Forces an Arbitrarily Large Lipschitz Constant

  • Original language description

    We prove that the regular square grid of points in the integer lattice cannot be recovered from an arbitrary n^2-element subset of Z^2 via a mapping with prescribed Lipschitz constant (independent of n). This answers negatively a question of Feige from 2002. Our resolution of Feige&apos;s question takes place largely in a continuous setting and is based on some new results for Lipschitz mappings falling into two broad areas of interest, which we study independently. Firstly the present work contains a detailed investigation of Lipschitz regular mappings on Euclidean spaces, with emphasis on their bilipschitz decomposability in a sense comparable to that of the well known result of Jones. Secondly, we build on work of Burago and Kleiner and McMullen on non-realisable densities. We verify the existence, and further prevalence, of strongly non-realisable densities inside spaces of continuous functions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ16-01602Y" target="_blank" >GJ16-01602Y: Topological and geometric approaches to classes of permutations and graph properties</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Geometric and Functional Analysis

  • ISSN

    1016-443X

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    56

  • Pages from-to

    589-644

  • UT code for WoS article

    000435786000002

  • EID of the result in the Scopus database

    2-s2.0-85045765989