All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Derived representation theory of Lie algebras and stable homotopy categorification of sl_k

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385332" target="_blank" >RIV/00216208:11320/18:10385332 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0001870818304389" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0001870818304389</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.aim.2018.10.044" target="_blank" >10.1016/j.aim.2018.10.044</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Derived representation theory of Lie algebras and stable homotopy categorification of sl_k

  • Original language description

    We set up foundations of representation theory over S, the sphere spectrum, which is the &quot;initial ring&quot; of stable homotopy theory. In particular, we treat S-Lie algebras and their representations, characters, gl_n(S)-Verma modules and their duals, Harish-Chandra pairs and Zuckermann functors. As an application, we construct a Khovanov sl_k-stable homotopy type with a large prime hypothesis, which is a new link invariant, using a stable homotopy analogue of the method of J. Sussan.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advances in Mathematics

  • ISSN

    0001-8708

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    341

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    73

  • Pages from-to

    367-439

  • UT code for WoS article

    000452818700009

  • EID of the result in the Scopus database

    2-s2.0-85056165996