All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnon excitations and quantum critical behavior of the ferromagnet U4Ru7Ge6

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385390" target="_blank" >RIV/00216208:11320/18:10385390 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevB.98.174431" target="_blank" >https://doi.org/10.1103/PhysRevB.98.174431</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevB.98.174431" target="_blank" >10.1103/PhysRevB.98.174431</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnon excitations and quantum critical behavior of the ferromagnet U4Ru7Ge6

  • Original language description

    We present an extensive study of the ferromagnetic heavy-fermion compound U4Ru7Ge6. Measurements of electrical resistivity, specific heat, and magnetic properties show that U4Ru7Ge6 orders ferromagnetically at ambient pressure with a Curie temperature T-C = 6.8 +/- 0.3 K. The low-temperature magnetic behavior of this soft ferromagnet is dominated by the excitation of gapless spin-wave modes. Our results on the transport properties of U(4)Ru(7)Ge(6 )under pressures up to 2.49 GPa suggest that U4Ru7Ge6 has a putative ferromagnetic quantum critical point (QCP) at P-c approximate to 1.7 +/- 0.02 GPa. In the ordered phase, ferromagnetic magnons scatter the conduction electrons and give rise to a well-defined power law temperature dependence in the resistivity. The coefficient of this term is related to the spin-wave stiffness, and measurements of the very low temperature resistivity show the behavior of this quantity as the ferromagnetic QCP is approached. We find that the spin-wave stiffness decreases with increasing pressure, implying that the transition to the nonmagnetic Fermi liquid state is driven by the softening of the magnons. The observed quantum critical behavior of the magnetic stiffness is consistent with the influence of disorder in our system. At quantum criticality (P = P-c approximate to 1.7 +/- 0.02 GPa), the resistivity shows the behavior expected for an itinerant metallic system near a ferromagnetic QCP.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/LM2011025" target="_blank" >LM2011025: MLTL - Magnetism and Low Temperature Laboratories - operation and development of national research infrastructure</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review B

  • ISSN

    2469-9950

  • e-ISSN

  • Volume of the periodical

    98

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000451330200005

  • EID of the result in the Scopus database

    2-s2.0-85057357205