Induced 2-degenerate Subgraphs of Triangle-free Planar Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385410" target="_blank" >RIV/00216208:11320/18:10385410 - isvavai.cz</a>
Result on the web
<a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i1p62" target="_blank" >https://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i1p62</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Induced 2-degenerate Subgraphs of Triangle-free Planar Graphs
Original language description
A graph is k degenerate if every subgraph has minimum degree at most k. We provide lower bounds on the size of a maximum induced 2-degenerate subgraph in a triangle-free planar graph. We denote the size of a maximum induced 2-degenerate subgraph of a graph G by alpha(2) (G). We prove that if G is a connected triangle-free planar graph with n vertices and rn edges, then alpha(2) (G) >= 6n-m-1/5. By Euler's Formula, this implies alpha(2)(G) >= 4/5n. We also prove that if G is a triangle-free planar graph on n vertices with at most n 3 vertices of degree at most three, then alpha(2) (G) >= 7/8n - 18n(3.)
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-04611S" target="_blank" >GA17-04611S: Ramsey-like aspects of graph coloring</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
—
UT code for WoS article
000432157200003
EID of the result in the Scopus database
2-s2.0-85044750950