New inclination changing eclipsing binaries in the Magellanic Clouds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385773" target="_blank" >RIV/00216208:11320/18:10385773 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/18:00499976 RIV/00216224:14310/18:00102054
Result on the web
<a href="https://doi.org/10.1051/0004-6361/201730655" target="_blank" >https://doi.org/10.1051/0004-6361/201730655</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/201730655" target="_blank" >10.1051/0004-6361/201730655</a>
Alternative languages
Result language
angličtina
Original language name
New inclination changing eclipsing binaries in the Magellanic Clouds
Original language description
Context. Multiple stellar systems are unique laboratories for astrophysics. Analysis of their orbital dynamics, if well characterized from their observations, may reveal invaluable information about the physical properties of the participating stars. Unfortunately, there are only a few known and well described multiple systems, this is even more so for systems located outside the Milky Way galaxy. A particularly interesting situation occurs when the inner binary in a compact triple system is eclipsing. This is because the stellar interaction, typically resulting in precession of orbital planes, may be observable as a variation of depth of the eclipses on a long timescale. Aims. We aim to present a novel method to determine compact triples using publicly available photometric data from large surveys. Here we apply it to eclipsing binaries (EBs) in Magellanic Clouds from OGLE III database. Our tool consists of identifying the cases where the orbital plane of EB evolves in accord with expectations from the interaction with a third star. Methods. We analyzed light curves (LCs) of 26121 LMC and 6138 SMC EBs with the goal to identify those for which the orbital inclination varies in time. Archival LCs of the selected systems, when complemented by our own observations with Danish 1.54-m telescope, were thoroughly analyzed using the PHOEBE program. This provided physical parameters of components of each system. Time dependence of the EB's inclination was described using the theory of orbital-plane precession. By observing the parameter- dependence of the precession rate, we were able to constrain the third companion mass and its orbital period around EB. Results. We identified 58 candidates of new compact triples in Magellanic Clouds. This is the largest published sample of such systems so far. Eight of them were analyzed thoroughly and physical parameters of inner binary were determined together with an estimation of basic characteristics of the third star. Prior to our work, only one such system was well characterized outside the Milky Way galaxy. Therefore, we increased this sample in a significant way. These data may provide important clues about stellar formation mechanisms for objects with different metalicity than found in our galactic neighborhood.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics [online]
ISSN
1432-0746
e-ISSN
—
Volume of the periodical
609
Issue of the periodical within the volume
Neuveden
Country of publishing house
FR - FRANCE
Number of pages
30
Pages from-to
—
UT code for WoS article
000419994200014
EID of the result in the Scopus database
2-s2.0-85040312401