All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Graphene composites with dental and biomedical applicability

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10385990" target="_blank" >RIV/00216208:11320/18:10385990 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.3762/bjnano.9.73" target="_blank" >https://doi.org/10.3762/bjnano.9.73</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3762/bjnano.9.73" target="_blank" >10.3762/bjnano.9.73</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Graphene composites with dental and biomedical applicability

  • Original language description

    Pure graphene in the form of few-layer graphene (FLG) - 1 to 6 layers - is biocompatible and non-cytotoxic. This makes FLG an ideal material to incorporate into dental polymers to increase their strength and durability. It is well known that graphene has high mechanical strength and has been shown to enhance the mechanical, physical and chemical properties of biomaterials. However, for commercial applicability, methods to produce larger than lab-scale quantities of graphene are required. Here, we present a simple method to make large quantities of FLG starting with commercially available multi-layer graphene (MLG). This FLG material was then used to fabricate graphene dental-polymer composites. The resultant graphene-modified composites show that low concentrations of graphene (ca. 0.2 wt %) lead to enhanced performance improvement in physio-mechanical properties - the mean compressive strength increased by 27% and the mean compressive modulus increased by 22%. Herein we report a new, cheap and simple method to make large quantities of few-layer graphene which was then incorporated into a common dental polymer to fabricate graphene-composites which shows very promising mechanical properties.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    <a href="/en/project/LM2015057" target="_blank" >LM2015057: Surface Physics Laboratory – Materials Science Beamline</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Beilstein Journal of Nanotechnology

  • ISSN

    2190-4286

  • e-ISSN

  • Volume of the periodical

    9

  • Issue of the periodical within the volume

    Mar 5

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    8

  • Pages from-to

    801-808

  • UT code for WoS article

    000427530500002

  • EID of the result in the Scopus database

    2-s2.0-85043487901