PREDUALS OF JBW*-TRIPLES ARE 1-PLICHKO SPACES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386000" target="_blank" >RIV/00216208:11320/18:10386000 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00323349
Result on the web
<a href="https://doi.org/10.1093/qmath/hax057" target="_blank" >https://doi.org/10.1093/qmath/hax057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/qmath/hax057" target="_blank" >10.1093/qmath/hax057</a>
Alternative languages
Result language
angličtina
Original language name
PREDUALS OF JBW*-TRIPLES ARE 1-PLICHKO SPACES
Original language description
We investigate the preduals of JBW*-triples from the point of view of Banach space theory. We show that the algebraic structure of a JBW*-triple M naturally yields a decomposition of its pre-dual M*, by showing that M* is a 1-Plichko space (that is, it admits a countably 1-norming Markushevich basis). In case M is sigma-finite, its predual M* is even weakly compactly generated. These results are a common roof for previous results on L-1-spaces, preduals of von Neumann algebras, and preduals of JBW*-algebras.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GAP201%2F12%2F0290" target="_blank" >GAP201/12/0290: Topological and geometrical properties of Banach spaces and operator algebras</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Quarterly Journal of Mathematics
ISSN
0033-5606
e-ISSN
—
Volume of the periodical
69
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
26
Pages from-to
655-680
UT code for WoS article
000434858700014
EID of the result in the Scopus database
2-s2.0-85048598705