k-Dirac Complexes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386085" target="_blank" >RIV/00216208:11320/18:10386085 - isvavai.cz</a>
Result on the web
<a href="https://www.emis.de/journals/SIGMA/2018/012/sigma18-012.pdf" target="_blank" >https://www.emis.de/journals/SIGMA/2018/012/sigma18-012.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3842/SIGMA.2018.012" target="_blank" >10.3842/SIGMA.2018.012</a>
Alternative languages
Result language
angličtina
Original language name
k-Dirac Complexes
Original language description
This is the first paper in a series of two papers. In this paper we construct complexes of invariant differential operators which live on homogeneous spaces of |2|-graded parabolic geometries of some particular type. We call them k-Dirac complexes. More explicitly, we will show that each k-Dirac complex arises as the direct image of a relative BGG sequence and so this fits into the scheme of the Penrose transform. We will also prove that each k-Dirac complex is formally exact, i.e., it induces a long exact sequence of infinite (weighted) jets at any fixed point. In the second part of the series we use this information to show that each k -Dirac complex is exact at the level of formal power series at any point and that it descends to a resolution of the k -Dirac operator studied in Clifford analysis.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA17-01171S" target="_blank" >GA17-01171S: Invariant differential operators and their applications in geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Symmetry, Integrability and Geometry - Methods and Applications
ISSN
1815-0659
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
14
Country of publishing house
UA - UKRAINE
Number of pages
33
Pages from-to
—
UT code for WoS article
000425364400001
EID of the result in the Scopus database
2-s2.0-85045061020