A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386558" target="_blank" >RIV/00216208:11320/18:10386558 - isvavai.cz</a>
Result on the web
<a href="https://cgg.mff.cuni.cz/~jaroslav/papers/2018-brdfmanifold/2018-herholz-brdfmanifold-paper.pdf" target="_blank" >https://cgg.mff.cuni.cz/~jaroslav/papers/2018-brdfmanifold/2018-herholz-brdfmanifold-paper.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2312/sre.20181171" target="_blank" >10.2312/sre.20181171</a>
Alternative languages
Result language
angličtina
Original language name
A Unified Manifold Framework for Efficient BRDF Sampling based on Parametric Mixture Models
Original language description
VirtuallyallexistinganalyticBRDFmodelsarebuiltfrommultiplefunctionalcomponents(e.g.,Fresnelterm,normaldistribution function, etc.). This makes accurate importance sampling of the full model challenging, and so current solutions only cover a subset of the model's components. This leads to sub-optimal or even invalid proposed directional samples, which can negatively impact the efficiency of light transport solvers based on Monte Carlo integration. To overcome this problem, we propose a unified BRDF sampling strategy based on parametric mixture models (PMMs). We show that for a given BRDF, the parameters of the associated PMM can be defined in smooth manifold spaces, which can be compactly represented using multivariate B-Splines. These manifolds are defined in the parameter space of the BRDF and allow for arbitrary, continuous queries of the PMM representation for varying BRDF parameters, which further enables importance sampling for spatially varying BRDFs. Our representation is not limited to analytic BRDF models, but can also be used for sampling measured BRDF data. The resulting manifold framework enables accurate and efficient BRDF importance sampling with very small approximation errors.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA16-18964S" target="_blank" >GA16-18964S: Adaptive sampling and Markov chain Monte Carlo methods in light transport simulation</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Eurographics Symposium on Rendering - Experimental Ideas & Implementations
ISBN
978-3-03868-068-0
ISSN
1727-3463
e-ISSN
neuvedeno
Number of pages
12
Pages from-to
—
Publisher name
The Eurographics Association
Place of publication
Switzerland
Event location
Karlsruhe, Germany
Event date
Jul 2, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—