All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Exceptional points near first- and second-order quantum phase transitions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386594" target="_blank" >RIV/00216208:11320/18:10386594 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1103/PhysRevE.97.012112" target="_blank" >https://doi.org/10.1103/PhysRevE.97.012112</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevE.97.012112" target="_blank" >10.1103/PhysRevE.97.012112</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Exceptional points near first- and second-order quantum phase transitions

  • Original language description

    We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first-and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/GA13-07117S" target="_blank" >GA13-07117S: Statistical approaches to quantum many-body systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Physical Review E

  • ISSN

    2470-0045

  • e-ISSN

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000419774100001

  • EID of the result in the Scopus database

    2-s2.0-85040736165