Exceptional points near first- and second-order quantum phase transitions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386594" target="_blank" >RIV/00216208:11320/18:10386594 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevE.97.012112" target="_blank" >https://doi.org/10.1103/PhysRevE.97.012112</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.97.012112" target="_blank" >10.1103/PhysRevE.97.012112</a>
Alternative languages
Result language
angličtina
Original language name
Exceptional points near first- and second-order quantum phase transitions
Original language description
We study the impact of quantum phase transitions (QPTs) on the distribution of exceptional points (EPs) of the Hamiltonian in the complex-extended parameter domain. Analyzing first-and second-order QPTs in the Lipkin-Meshkov-Glick model we find an exponentially and polynomially close approach of EPs to the respective critical point with increasing size of the system. If the critical Hamiltonian is subject to random perturbations of various kinds, the averaged distribution of EPs close to the critical point still carries decisive information on the QPT type. We therefore claim that properties of the EP distribution represent a parametrization-independent signature of criticality in quantum systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GA13-07117S" target="_blank" >GA13-07117S: Statistical approaches to quantum many-body systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review E
ISSN
2470-0045
e-ISSN
—
Volume of the periodical
97
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
—
UT code for WoS article
000419774100001
EID of the result in the Scopus database
2-s2.0-85040736165