All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386604" target="_blank" >RIV/00216208:11320/18:10386604 - isvavai.cz</a>

  • Alternative codes found

    RIV/68378271:_____/18:00497604 RIV/61989592:15310/18:73587557

  • Result on the web

    <a href="https://doi.org/10.3847/2041-8213/aaa66d" target="_blank" >https://doi.org/10.3847/2041-8213/aaa66d</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3847/2041-8213/aaa66d" target="_blank" >10.3847/2041-8213/aaa66d</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

  • Original language description

    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 degrees. recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray density constructed using each catalog has two free parameters, the fraction of events correlating with astrophysical objects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. A maximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength of each model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis of isotropy with a statistical significance of 4.0 sigma, the highest value of the test statistic being for energies above 39 EeV. The three alternative models are favored against isotropy with 2.7 sigma-3.2 sigma significance. The origin of the indicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astrophysical Journal Letters

  • ISSN

    2041-8205

  • e-ISSN

  • Volume of the periodical

    853

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000424053800003

  • EID of the result in the Scopus database

    2-s2.0-85041621635