Completion of the mixed unit interval graphs hierarchy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10386652" target="_blank" >RIV/00216208:11320/18:10386652 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/jgt.22159" target="_blank" >https://doi.org/10.1002/jgt.22159</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/jgt.22159" target="_blank" >10.1002/jgt.22159</a>
Alternative languages
Result language
angličtina
Original language name
Completion of the mixed unit interval graphs hierarchy
Original language description
We describe the missing class of the hierarchy of mixed unit interval graphs. This class is generated by the intersection graphs of families of unit intervals that are allowed to be closed, open, and left-closed-right-open. (By symmetry, considering closed, open, and right-closed-left-open unit intervals generates the same class.) We show that this class lies strictly between unit interval graphs and mixed unit interval graphs. We give a complete characterization of this new class, as well as quadratic-time algorithms that recognize graphs from this class and produce a corresponding interval representation if one exists. We also show that the algorithm from Shuchat et al. [8] directly extends to provide a quadratic-time algorithm to recognize the class of mixed unit interval graphs.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Graph Theory
ISSN
0364-9024
e-ISSN
—
Volume of the periodical
87
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
317-332
UT code for WoS article
000428550700005
EID of the result in the Scopus database
2-s2.0-85020310183