All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Lower Bounds for Combinatorial Algorithms for Boolean Matrix Multiplication

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10387319" target="_blank" >RIV/00216208:11320/18:10387319 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.4230/LIPIcs.STACS.2018.23" target="_blank" >https://doi.org/10.4230/LIPIcs.STACS.2018.23</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.STACS.2018.23" target="_blank" >10.4230/LIPIcs.STACS.2018.23</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Lower Bounds for Combinatorial Algorithms for Boolean Matrix Multiplication

  • Original language description

    In this paper we propose models of combinatorial algorithms for the Boolean Matrix Multiplication (BMM), and prove lower bounds on computing BMM in these models. First, we give a relatively relaxed combinatorial model which is an extension of the model by Angluin (1976), and we prove that the time required by any algorithm for the BMM is at least Omega(n^3 / 2^{O( sqrt{ log n })}). Subsequently, we propose a more general model capable of simulating the &quot;Four Russian Algorithm&quot;. We prove a lower bound of Omega(n^{7/3} / 2^{O(sqrt{ log n })}) for the BMM under this model. We use a special class of graphs, called (r,t)-graphs, originally discovered by Rusza and Szemeredi (1978), along with randomization, to construct matrices that are hard instances for our combinatorial models.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    35th Symposium on Theoretical Aspects of Computer Science, {STACS} 2018, February 28 to March 3, 2018, Caen, France

  • ISBN

    978-3-95977-062-0

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    14

  • Pages from-to

    1-14

  • Publisher name

    Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik

  • Place of publication

    Schloss Dagstuhl, Germany

  • Event location

    Caen, France

  • Event date

    Feb 28, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article