All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Impact of metallicity and star formation rate on the time-dependent, galaxy-wide stellar initial mass function

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10388468" target="_blank" >RIV/00216208:11320/18:10388468 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1051/0004-6361/201833055" target="_blank" >https://doi.org/10.1051/0004-6361/201833055</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/201833055" target="_blank" >10.1051/0004-6361/201833055</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Impact of metallicity and star formation rate on the time-dependent, galaxy-wide stellar initial mass function

  • Original language description

    The stellar initial mass function (IMF) is commonly assumed to be an invariant probability density distribution function of initial stellar masses. These initial stellar masses are generally represented by the canonical IMF, which is defined as the result of one star formation event in an embedded cluster. As a consequence, the galaxy-wide IMF (gwIMF) should also be invariant and of the same form as the canonical IMF, gwIMF is defined as the sum of the IMFs of all star-forming regions in which embedded clusters form and spawn the galactic field population of the galaxy. Recent observational and theoretical results challenge the hypothesis that the gwIMF is invariant. In order to study the possible reasons for this variation, it is useful to relate the observed IMF to the gwIMF. Starting with the IMF determined in resolved star clusters, we apply the IGIMF-theory to calculate a comprehensive grid of gwIMF models for metallicities, [Fe = H] is an element of (-3, 1), and galaxy-wide star formation rates (SFRs), SFR is an element of (10(-5), 10(5)) M-circle dot yr(-1). For a galaxy with metallicity [Fe/H] &lt; 0 and SFR &gt; 1 M-circle dot yr(-1), which is a common condition in the early Universe, we find that the gwIMF is both bottom light (relatively fewer low-mass stars) and top heavy (more massive stars), when compared to the canonical IMF. For a SFR &lt; 1 M-circle dot yr(-1) the gwIMF becomes top light regardless of the metallicity. For metallicities [Fe = H] &gt; 0 the gwIMF can become bottom heavy regardless of the SFR. The IGIMF models predict that massive elliptical galaxies should have formed with a gwIMF that is top heavy within the first few hundred Myr of the life of the galaxy and that it evolves into a bottom heavy gwIMF in the metal-enriched galactic centre. Using the gwIMF grids, we study the SFR H ff relation and its dependency on metallicity and the SFR. We also study the correction factors to the Kennicutt SFRK H ff relation and provide new fitting functions. Late-type dwarf galaxies show significantly higher SFRs with respect to Kennicutt SFRs, while star-forming massive galaxies have significantly lower SFRs than hitherto thought. This has implications for gas-consumption timescales and for the main sequence of galaxies. We explicitly discuss Leo P and ultra-faint dwarf galaxies.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics [online]

  • ISSN

    1432-0746

  • e-ISSN

  • Volume of the periodical

    620

  • Issue of the periodical within the volume

    listopad

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    000451249600007

  • EID of the result in the Scopus database

    2-s2.0-85057747992