All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10389084" target="_blank" >RIV/00216208:11320/18:10389084 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1051/0004-6361/201732151" target="_blank" >https://doi.org/10.1051/0004-6361/201732151</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/0004-6361/201732151" target="_blank" >10.1051/0004-6361/201732151</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

  • Original language description

    A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M-circle dot is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 10(6) yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass &lt;300 M-circle dot, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M-circle dot are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M-circle dot are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M-circle dot can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, mu Col and iota Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar-dynamical ejections of massive stars in the currently forming population is also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Astronomy &amp; Astrophysics [online]

  • ISSN

    1432-0746

  • e-ISSN

  • Volume of the periodical

    612

  • Issue of the periodical within the volume

    APR 27 2018

  • Country of publishing house

    FR - FRANCE

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    000430955300009

  • EID of the result in the Scopus database

    2-s2.0-85046658805