All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On integrability of the geodesic deviation equation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390160" target="_blank" >RIV/00216208:11320/18:10390160 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1140/epjc/s10052-018-6133-1" target="_blank" >https://doi.org/10.1140/epjc/s10052-018-6133-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1140/epjc/s10052-018-6133-1" target="_blank" >10.1140/epjc/s10052-018-6133-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On integrability of the geodesic deviation equation

  • Original language description

    The Jacobi equation for geodesic deviation describes finite size effects due to the gravitational tidal forces. In this paper we show how one can integrate the Jacobi equation in any spacetime admitting completely integrable geodesics. Namely, by linearizing the geodesic equation and its conserved charges, we arrive at the invariant Wronskians for the Jacobi system that are linear in the &apos;deviation momenta&apos; and thus yield a system of first-order differential equations that can be integrated. The procedure is illustrated on an example of a rotating black hole spacetime described by the Kerr geometry and its higher-dimensional generalizations. A number of related topics, including the phase space formulation of the theory and the derivation of the covariant Hamiltonian for the Jacobi system are also discussed.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10300 - Physical sciences

Result continuities

  • Project

    <a href="/en/project/GB14-37086G" target="_blank" >GB14-37086G: Albert Einstein Center for Gravitation and Astrophysics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    European Physical Journal C

  • ISSN

    1434-6044

  • e-ISSN

  • Volume of the periodical

    78

  • Issue of the periodical within the volume

    8

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    17

  • Pages from-to

  • UT code for WoS article

    000441930700002

  • EID of the result in the Scopus database

    2-s2.0-85052204937