Trivial Transfer Learning for Low-Resource Neural Machine Translation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390163" target="_blank" >RIV/00216208:11320/18:10390163 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Trivial Transfer Learning for Low-Resource Neural Machine Translation
Original language description
Transfer learning has been proven as an effective technique for neural machine translation under low-resource conditions. Existing methods require a common target language, language relatedness, or specific training tricks and regimes. We present a simple transfer learning method, where we first train a "parent" model for a high-resource language pair and then continue the training on a lowresource pair only by replacing the training corpus. This "child" model performs significantly better than the baseline trained for lowresource pair only. We are the first to show this for targeting different languages, and we observe the improvements even for unrelated languages with different alphabets.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Third Conference on Machine Translation, Volume 1: Research Papers
ISBN
978-1-948087-81-0
ISSN
—
e-ISSN
neuvedeno
Number of pages
9
Pages from-to
244-252
Publisher name
Association for Computational Linguistics
Place of publication
Stroudsburg, PA, USA
Event location
Bruxelles, Belgium
Event date
Oct 31, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—