Covariant conserved currents for scalar-tensor Horndeski theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390189" target="_blank" >RIV/00216208:11320/18:10390189 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21340/18:00328085
Result on the web
<a href="https://doi.org/10.1063/1.5003190" target="_blank" >https://doi.org/10.1063/1.5003190</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5003190" target="_blank" >10.1063/1.5003190</a>
Alternative languages
Result language
angličtina
Original language name
Covariant conserved currents for scalar-tensor Horndeski theory
Original language description
The scalar-tensor theories have become popular recently in particular in connection with attempts to explain present accelerated expansion of the universe, but they have been considered as a natural extension of general relativity long time ago. The Horndeski scalar-tensor theory involving four invariantly defined Lagrangians is a natural choice since it implies field equations involving at most second derivatives. Following the formalisms of defining covariant global quantities and conservation laws for perturbations of spacetimes in standard general relativity, we extend these methods to the general Horndeski theory and find the covariant conserved currents for all four Lagrangians. The current is also constructed in the case of linear perturbations involving both metric and scalar fields. As a specific illustration, we derive a superpotential that leads to the covariantly conserved current in the Branse-Dicke theory.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10300 - Physical sciences
Result continuities
Project
<a href="/en/project/GB14-37086G" target="_blank" >GB14-37086G: Albert Einstein Center for Gravitation and Astrophysics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
59
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
22
Pages from-to
—
UT code for WoS article
000431271800022
EID of the result in the Scopus database
2-s2.0-85045103955