On the higher integrability of weak solutions to the generalized Stokes system with bounded measurable coefficients
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390772" target="_blank" >RIV/00216208:11320/18:10390772 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.4310/DPDE.2018.v15.n2.a3" target="_blank" >http://dx.doi.org/10.4310/DPDE.2018.v15.n2.a3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/DPDE.2018.v15.n2.a3" target="_blank" >10.4310/DPDE.2018.v15.n2.a3</a>
Alternative languages
Result language
angličtina
Original language name
On the higher integrability of weak solutions to the generalized Stokes system with bounded measurable coefficients
Original language description
In this paper, we deal with the generalized Stokes and Navier-Stokes problem. The elliptic term in the equation is assumed to have form - div(AD(u)), where the matrix function A is uniformly positive definite, but only L-infinity. Using a Meyers' type estimate we improve the integrability of gradients of local weak solutions to a generalized Stokes problem. We also show that in the case of planar motion the integrability of local weak solution to generalized Navier Stokes system can be improved. This in combination with previous result gives better properties of gradient of solutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Dynamics of Partial Differential Equations
ISSN
1548-159X
e-ISSN
—
Volume of the periodical
15
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
127-146
UT code for WoS article
000433389700003
EID of the result in the Scopus database
2-s2.0-85048429049