Approximation by mappings with singular Hessian minors
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390779" target="_blank" >RIV/00216208:11320/18:10390779 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.na.2018.06.015" target="_blank" >https://doi.org/10.1016/j.na.2018.06.015</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.na.2018.06.015" target="_blank" >10.1016/j.na.2018.06.015</a>
Alternative languages
Result language
angličtina
Original language name
Approximation by mappings with singular Hessian minors
Original language description
Let Omega subset of R-n be a Lipschitz domain. Given 1 <= p < k <= n and any u is an element of W-2,W-P(Omega) belonging to the little Holder class c(1,alpha) we construct a sequence u(j) in the same space with rank D(2)u(j) < k almost everywhere such that u(j)( )-> u in C-1,C-alpha and weakly in W-2,W-P. This result is in strong contrast with known regularity behavior of functions in W-2,W-P, p >= k, satisfying the same rank inequality. (C) 2018 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-08218S" target="_blank" >GA15-08218S: Theory of real functions and its applications in geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Nonlinear Analysis, Theory, Methods and Applications
ISSN
0362-546X
e-ISSN
—
Volume of the periodical
2018
Issue of the periodical within the volume
176
Country of publishing house
GB - UNITED KINGDOM
Number of pages
17
Pages from-to
209-225
UT code for WoS article
000445236400013
EID of the result in the Scopus database
2-s2.0-85049959970