Error estimates for higher-order finite volume schemes for convection-diffusion problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390813" target="_blank" >RIV/00216208:11320/18:10390813 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1515/jnma-2016-1056" target="_blank" >https://doi.org/10.1515/jnma-2016-1056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/jnma-2016-1056" target="_blank" >10.1515/jnma-2016-1056</a>
Alternative languages
Result language
angličtina
Original language name
Error estimates for higher-order finite volume schemes for convection-diffusion problems
Original language description
It is still an open problem to prove a priori error estimates for finite volume schemes of higher order MUSCL type, including limiters, on unstructured meshes, which show some improvement compared to first order schemes. In this paper we use these higher order schemes for the discretization of convection dominated elliptic problems in a convex bounded domain Omega in R-2 and we can prove such kind of an a priori error estimate. In the part of the estimate, which refers to the discretization of the convective term, we gain h(1/2). Although the original problem is linear, the numerical problem becomes nonlinear, due to MUSCL type reconstruction/limiter technique.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Numerical Mathematics
ISSN
1570-2820
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
28
Pages from-to
35-62
UT code for WoS article
000426816400003
EID of the result in the Scopus database
2-s2.0-85043992551