All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Error estimates for higher-order finite volume schemes for convection-diffusion problems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10390813" target="_blank" >RIV/00216208:11320/18:10390813 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1515/jnma-2016-1056" target="_blank" >https://doi.org/10.1515/jnma-2016-1056</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/jnma-2016-1056" target="_blank" >10.1515/jnma-2016-1056</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Error estimates for higher-order finite volume schemes for convection-diffusion problems

  • Original language description

    It is still an open problem to prove a priori error estimates for finite volume schemes of higher order MUSCL type, including limiters, on unstructured meshes, which show some improvement compared to first order schemes. In this paper we use these higher order schemes for the discretization of convection dominated elliptic problems in a convex bounded domain Omega in R-2 and we can prove such kind of an a priori error estimate. In the part of the estimate, which refers to the discretization of the convective term, we gain h(1/2). Although the original problem is linear, the numerical problem becomes nonlinear, due to MUSCL type reconstruction/limiter technique.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Numerical Mathematics

  • ISSN

    1570-2820

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    28

  • Pages from-to

    35-62

  • UT code for WoS article

    000426816400003

  • EID of the result in the Scopus database

    2-s2.0-85043992551