All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

LOUGA: learning planning operators using genetic algorithms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F18%3A10391932" target="_blank" >RIV/00216208:11320/18:10391932 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-319-97289-3_10" target="_blank" >https://doi.org/10.1007/978-3-319-97289-3_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-97289-3_10" target="_blank" >10.1007/978-3-319-97289-3_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    LOUGA: learning planning operators using genetic algorithms

  • Original language description

    Planning domain models are critical input to current automated planners. These models provide description of planning operators that formalize how an agent can change the state of the world. It is not easy to obtain accurate description of planning operators, namely to ensure that all preconditions and effects are properly specified. Therefore automated techniques to learn them are important for domain modelling. In this paper, we propose a novel method for learning planning operators (action schemata) from example plans. This method, called LOUGA (Learning Operators Using Genetic Algorithms), uses a genetic algorithm to learn action effects and an ad-hoc algorithm to learn action preconditions. We show experimentally that LOUGA is more accurate and faster than the ARMS system, currently the only technique for solving the same type of problem.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/GA18-07252S" target="_blank" >GA18-07252S: MoRePlan: Modeling and Reformulating Planning Problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Knowledge Management and Acquisition for Intelligent Systems. PKAW 2018

  • ISBN

    978-3-319-97288-6

  • ISSN

    0302-9743

  • e-ISSN

    neuvedeno

  • Number of pages

    15

  • Pages from-to

    124-138

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Nanjing, China

  • Event date

    Aug 28, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article