All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Geometric realizations of affine Kac-Moody algebras

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10385356" target="_blank" >RIV/00216208:11320/19:10385356 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LPhmUmR-TE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=LPhmUmR-TE</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2019.03.011" target="_blank" >10.1016/j.jalgebra.2019.03.011</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Geometric realizations of affine Kac-Moody algebras

  • Original language description

    The goal of the present paper is to obtain new free field realizations of affine Kac-Moody algebras motivated by geometric representation theory for generalized flag manifolds of finite dimensional semisimple Lie groups. We provide an explicit construction of a large class of irreducible modules associated with certain parabolic subalgebras covering all known special cases.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

  • Volume of the periodical

    2019

  • Issue of the periodical within the volume

    528

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    40

  • Pages from-to

    177-216

  • UT code for WoS article

    000466262100007

  • EID of the result in the Scopus database

    2-s2.0-85063373435