All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10395977" target="_blank" >RIV/00216208:11320/19:10395977 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GKdkj3U2Js" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GKdkj3U2Js</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ijhydene.2019.04.216" target="_blank" >10.1016/j.ijhydene.2019.04.216</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Magnetron sputtered thin-film vertically segmented Pt-Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells

  • Original language description

    Dependence on noble metal catalysts is considered to be the main factor which hinders wider commercialization of proton exchange membrane fuel cells (PEM-FCs) and water electrolyzers (PEM-WEs). One way of lowering the loading of Pt and Ir is by using thin-film techniques for their deposition onto the high-surface conductive nanoparticles. Another approach, which is convenient in applications where the complete cycle of electricity - &gt; H-2 - &gt; electricity takes place, is merging the PEM-WEs and PEM-FCs into one bi-functional system - the unitized regenerative fuel cell (PEM-URFC). In accordance with the above mentioned conception, this paper revolves around unconventionally prepared bi-functional magnetron sputtered lower-loading Pt-Ir catalysts for the anode side of PEM-URFC. Two geometries of catalyst coated membranes (CCM) were compared, differing in relative positioning of individual Pt and Ir thin films sputtered on TiC-based support sublayer; the sandwich-like Ir/TiC/Pt structure and the co-sputtered Pt-Ir/TiC structure. Wide arsenal of analytical methods, ranging from photoelectron spectroscopy to electrochemical atomic force microscopy determined that co-sputtering of Pt and Ir leads to alloy formation, thus preventing iridium to fully electro-oxidize to IrOx which in turn helps to explain why sandwich-like Ir/TiC/Pt structure, with no alloy, outperforms the co-sputtered Pt-Ir/TiC CCM in both operational regimes despite having the exactly same noble metal loading. The PEM-URFC single cell with sandwich-like bi-functional anode catalyst yielded 31.8% of round-trip efficiency at 1 A cm(-2) in comparison to 34.2% achieved by combination of single-purpose cells with more than double the loading of noble metals. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Hydrogen Energy

  • ISSN

    0360-3199

  • e-ISSN

  • Volume of the periodical

    44

  • Issue of the periodical within the volume

    31

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    12

  • Pages from-to

    16087-16098

  • UT code for WoS article

    000472991100006

  • EID of the result in the Scopus database

    2-s2.0-85065771642