Practical Guide to Quantum Phase Transitions in Quantum-Dot-Based Tunable Josephson Junctions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10396378" target="_blank" >RIV/00216208:11320/19:10396378 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6SXDF.0aet" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=6SXDF.0aet</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevApplied.11.044094" target="_blank" >10.1103/PhysRevApplied.11.044094</a>
Alternative languages
Result language
angličtina
Original language name
Practical Guide to Quantum Phase Transitions in Quantum-Dot-Based Tunable Josephson Junctions
Original language description
Quantum dots attached to BCS superconducting leads exhibit a 0-π impurity quantum phase transition, which can be experimentally controlled either by the gate voltage or by the superconducting phase difference. For the pertinent superconducting single-impurity Anderson model, we present two simple analytical formulae describing the position of the phase boundary in parameter space for the weakly correlated and Kondo regime, respectively. Furthermore, we show that the two-level approximation provides an excellent description of the low-temperature physics of superconducting quantum dots near the phase transition. We discuss reliability and mutual agreement of available finite-temperature numerical methods (numerical renormalization group and quantum Monte Carlo) and suggest an alternative approach for efficient determination of the quantum phase boundary from measured finite-temperature data. Our results enable fast and efficient, yet reliable characterization and design of such nanoscopic tunable Josephson-junction devices. (C) 2019 American Physical Society.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
<a href="/en/project/GA16-19640S" target="_blank" >GA16-19640S: Vibrational effects in nonequilibrium electronic transport through nanosystems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review Applied
ISSN
2331-7019
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
044094
UT code for WoS article
000466447500003
EID of the result in the Scopus database
2-s2.0-85065490521