Compactness in abelian categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10397912" target="_blank" >RIV/00216208:11320/19:10397912 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p_Oojd2ZI0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p_Oojd2ZI0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jalgebra.2019.05.037" target="_blank" >10.1016/j.jalgebra.2019.05.037</a>
Alternative languages
Result language
angličtina
Original language name
Compactness in abelian categories
Original language description
We relativize the notion of a compact object in an abelian category with respect to a fixed subclass of objects. We show that the standard closure properties persist to hold in this case. Furthermore, we describe categorical and set-theoretical conditions under which all products of compact objects remain compact. (C) 2019 Elsevier Inc. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Algebra
ISSN
0021-8693
e-ISSN
—
Volume of the periodical
534
Issue of the periodical within the volume
September
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
273-288
UT code for WoS article
000477092800014
EID of the result in the Scopus database
2-s2.0-85067851739