All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Compactness in abelian categories

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10397912" target="_blank" >RIV/00216208:11320/19:10397912 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p_Oojd2ZI0" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p_Oojd2ZI0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jalgebra.2019.05.037" target="_blank" >10.1016/j.jalgebra.2019.05.037</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Compactness in abelian categories

  • Original language description

    We relativize the notion of a compact object in an abelian category with respect to a fixed subclass of objects. We show that the standard closure properties persist to hold in this case. Furthermore, we describe categorical and set-theoretical conditions under which all products of compact objects remain compact. (C) 2019 Elsevier Inc. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Algebra

  • ISSN

    0021-8693

  • e-ISSN

  • Volume of the periodical

    534

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    16

  • Pages from-to

    273-288

  • UT code for WoS article

    000477092800014

  • EID of the result in the Scopus database

    2-s2.0-85067851739