Adaptive higher-order space-time discontinuous Galerkin method for the computer simulation of variably-saturated porous media flows
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399590" target="_blank" >RIV/00216208:11320/19:10399590 - isvavai.cz</a>
Alternative codes found
RIV/60460709:41330/19:79634
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=78WtwoJhaU" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=78WtwoJhaU</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apm.2019.02.037" target="_blank" >10.1016/j.apm.2019.02.037</a>
Alternative languages
Result language
angličtina
Original language name
Adaptive higher-order space-time discontinuous Galerkin method for the computer simulation of variably-saturated porous media flows
Original language description
This paper is concerned with the numerical simulation of time-dependent variably-saturated Darcian flow problems described by the Richards equation. We present the adaptive higher-order space-time discontinuous Galerkin (hp-STDG) method which optimizes accuracy and efficiency by balancing the errors that arise from the space and time discretizations and from the resulting nonlinear algebraic system. Convergence problems related to the transition between unsaturated flow and saturated flow are eliminated by regularizing the constitutive formulas. We also present an hp-anisotropic mesh adaptation technique capable of generating unstructured triangular elements with optimal sizes, shapes, and polynomial approximation degrees. Several numerical experiments are presented to demonstrate the accuracy, efficiency, and robustness of the numerical method presented here.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Mathematical Modelling
ISSN
0307-904X
e-ISSN
—
Volume of the periodical
72
Issue of the periodical within the volume
August
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
276-305
UT code for WoS article
000470051900016
EID of the result in the Scopus database
2-s2.0-85063300961