All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FV-DG method for the pedestrian flow problem

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399594" target="_blank" >RIV/00216208:11320/19:10399594 - isvavai.cz</a>

  • Alternative codes found

    RIV/44555601:13440/19:43894564 RIV/68407700:21340/19:00333845

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MQzYkMfMrS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MQzYkMfMrS</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compfluid.2019.03.006" target="_blank" >10.1016/j.compfluid.2019.03.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    FV-DG method for the pedestrian flow problem

  • Original language description

    We consider the Pedestrian Flow Equations (PFEs) to model evacuation scenarios as a coupled system formed by a functional minimization problem for the desired direction of movement and a first order hyperbolic system with source term. The operator splitting is proposed for the numerical solution of the coupled system. The functional minimization is based on the modified Dijkstra&apos;s algorithm for the fastest path in a graph. The hyperbolic system is discretized by the combination of the Finite Volume Method (FVM) for the space discretization and the Discontinuous Galerkin Method (DGM) for the implicit time discretization. The original numerical flux of the Vijayasundaram type is used in the FVM. The standard approach for the desired direction of motion of pedestrians based on the solution of the Eikonal Equation is replaced by the functional minimization, which, together with the implicit time discontinuous Galerkin method, is the novelty of this paper. The relation between the proposed functional minimization and the Eikonal Equation is mentioned. The numerical examples of the solution of the PFEs are presented. (C) 2019 Elsevier Ltd. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Computers and Fluids

  • ISSN

    0045-7930

  • e-ISSN

  • Volume of the periodical

    183

  • Issue of the periodical within the volume

    April

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    000466823500001

  • EID of the result in the Scopus database

    2-s2.0-85062868745