FV-DG method for the pedestrian flow problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F19%3A10399594" target="_blank" >RIV/00216208:11320/19:10399594 - isvavai.cz</a>
Alternative codes found
RIV/44555601:13440/19:43894564 RIV/68407700:21340/19:00333845
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MQzYkMfMrS" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=MQzYkMfMrS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compfluid.2019.03.006" target="_blank" >10.1016/j.compfluid.2019.03.006</a>
Alternative languages
Result language
angličtina
Original language name
FV-DG method for the pedestrian flow problem
Original language description
We consider the Pedestrian Flow Equations (PFEs) to model evacuation scenarios as a coupled system formed by a functional minimization problem for the desired direction of movement and a first order hyperbolic system with source term. The operator splitting is proposed for the numerical solution of the coupled system. The functional minimization is based on the modified Dijkstra's algorithm for the fastest path in a graph. The hyperbolic system is discretized by the combination of the Finite Volume Method (FVM) for the space discretization and the Discontinuous Galerkin Method (DGM) for the implicit time discretization. The original numerical flux of the Vijayasundaram type is used in the FVM. The standard approach for the desired direction of motion of pedestrians based on the solution of the Eikonal Equation is replaced by the functional minimization, which, together with the implicit time discontinuous Galerkin method, is the novelty of this paper. The relation between the proposed functional minimization and the Eikonal Equation is mentioned. The numerical examples of the solution of the PFEs are presented. (C) 2019 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA17-01747S" target="_blank" >GA17-01747S: Theory and numerical analysis of coupled problems in fluid dynamics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computers and Fluids
ISSN
0045-7930
e-ISSN
—
Volume of the periodical
183
Issue of the periodical within the volume
April
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000466823500001
EID of the result in the Scopus database
2-s2.0-85062868745